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1. INTRODUCTION

In this study we examine the initialization and
assimilation of cloud and rainwater quantities in a mesoscale
regional model. In our swdy forecasts of explicit cloud and
rainwater are made using couservation equations. The
physical processes include condensation, evaporation,
autoconversion, accretion and the removal of rainwater by
_ fallout.  These physical processes, some of which are
paramelerized, represent source and sink terms in the
conservation cquations. The question of how 1o initialize the
explicit liquid water caleulations in numerical models and
how 1o retain information about precipitation processes
during the 4-D assimilation cycle are important issues that
wiil be addressed.

With increasing computer speed there has been a slow
but study enhancement in model horizontal grid resolution.
Current NWP models are approaching the spatial resolution
where time-dependent cloud variables are physically relevant.
In our pilot study we examine the feasibility of initializing and
assimilating cloud and rainwater using explicit cloud
conservation equations within a regional mesoscale model.
The knowledge of cloud and rainwater ficlds as a function of
time and space provides information, such as mode! heating
rates and vertical distributions, that are more difficult to
obtain from conventional cloud parameterization approaches
where cloud properties are not retained from one time step to
the next. Global models will soon routinely solve explicit
cloud and rainwater conservation equations, but limited area
mesoscale models can be utilized to examine this topic now.

Cloud and rainwater are the cumulative products of
the transport of atmospheric moisture, both vapor and liquid,
plus the physical processes included in cloud development
and decay. By their very nature cumulative processes are
difficult to initiate in numerical models, and it is common for
precipitation to be absent during the first few hours of a
numerical forecast. One reason for this deficiency is the
resolution of the data.  Conventional surface and upper air
Teports are known not to capture the mesoscale circulations
that have the enhanced convergence necessary to support
mesoscale precipitation processes. The missing mesoscale
circulations also influence the moisture and thermal ficlds
(Turpeinen 1990).  Consequently, in order to initjate
precipitation and assimilate cloud paranxeters it is necessary o
know additional information beyond the conventional
synoptic duta base.  This might include accurate estimates of
the vertical heating rates and the low level convergence and/for
the high level divergence that produces the cloud-sustaining

vertical motion ficld.  Also, model generated inaccuracies or

shortcomings, e.g., phase errors and inadequate physics,
must be accommodated in some manner.

When the heating rates are known or can be
approximated, then either diabatic or cumalus initialization is
possible (Errico and Rasch 1988; Donner 1988). These
initialization procedures help establish circulation patterns
consistent with latent heating processes that are otherwise not
resolved in synoptic scale data.  For a review of recent
studies using diabatic initialization schemes, see Table 1 in
Turpeinen et al. (1990). Without the heating rate
information each forecast must go through a shon time period
where the precipitation processes must 'spin-up' before
ruinfall can be produced. In regional mesoscale models this
spin-up usually occurs during the first 2 10 6 hours.
Diabatic initialization should reduce the degree and duration
of the spin-up. In contrast, normal mode or dynamic
initialization procedures, designed to help with the removal of
gravity waves during initialization, only provide slight or no
assistance in speeding up precipitation processes (Lejenas
1980).

Cloudwater and rainwater data are gencrally not )
available. Rain gauge reports imply information about the
total amount of liquid water reaching the surface, but no
knowledge about the instantancous vertical distribution is
rccoverable.  Most microwave satellite measurements of
instantaneous cloud quantitics only resolve the vertically
integrated cloud and/or integrated rainwater.  Thus it is
necessary to make some assumption about the verticyl
distribution of the heating rate.  New physical retricval
methods that combine observed microwave satellite radiances
with known meteorological fields and/or physical constraints
should provide some insight into the vertical partitioning of
the liquid water.  These techniques are just beginning to be
examined.

The use of diabatic initialization requires an answer 1o
the question of how the Luent heating is going o be
distributed in the vertical.  Some studies have used
representative profiles (Fiorino and Warner 1981); others
assume a general parabolic profile (Tarbell et al 1981; Salmon
and Warner 1986, etc.) while some have tried 1o use the
forecast model itself in some fashion (Wergen 1988: Danard
1985: Turpeinen et al. 1990). Donner (1988) used a
variational formulation to optimize the vertical distribution
with respect to the methodology of the Kuo .cu{mulus
parameterization.  In all but the Donner study it has been
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'customary to use either the diabatic omega equation or a
diabatic form of the nonnal mode initialization scheme.
Carlier pioneering work by Krishnamurti et al. (1984)
suggested that o reanalysis of the moisture and wind field is
also needed.

In this study we will incorporate in the initialization

the heating rates, cloudwater, and rainwater predicted by a
forecast beginning 12 hours before the assimilation process.
This information will be combined with new information
from observations, and heating rates will be utilized in a
diabatic form of the vertical mode initialization scheme of
Bourke and McGregor (1983).  Theoretically, if data is
always available then cloud and rainwater could be treated
much like other meteorological variables, i.e., updated and
modified during the 4D assimilation process. Caution is
however required when making large changes to existing
model cloud fields, or to the dynamics that support the
precipitation process. Testing and experience with explicit
cloud initialization will dictate what the correct procedure
should be.

Results from only a few experiments are presented
here. An evaluation of the contribution of the sutellite data
will be given at the conference.

2. MODILING CONSIDERATIONS

A modified version of the Burcau of Mecteorology
Research Centre (BMRC) operational incremental O/1
analysis (Mills and Seamian 1990), vertical mode initialization
or VMI (Bourke and McGregor 1983), and semi-implicit
forecast model (Leslie, et al. 1985) are used in this
investigation.  The incremental analysis is set to preserve the
irrotational wind field while the rotational component of the
differcnces between data and model guess wind and other
fields are evaluated by the O/1.  In our initial tests the
horizontal resolution is 120 km, while the vertical sigma
coordinate is subdivided into 15 levels. We sclected the low
resolution 120 km grid spacing on a 35x35 horizontal grid
configuration to specifically examine problems that are
relevant or commonly encountered in today's centers for
numerical weather prediction,

In our present study the Kuo cumulus
parameterization is turned off and the conventional large scale
precipitation procedure is replaced with explicit conservation
equations for cloudwater and rainwater.  The explicit cloud
physics contains processes modeled using a modificd Kessler
type scheme (Kessler 1974), while the condensation and fall
velocity calculations are similar to that described in Anthes, et
al. (1987).  The "fallout’ term is calculated by a semi-
Lagrangian method to allow for the 10 minute time steps used
in the semi-implicit model calculations.  Iee phase cloud
patticles have not yet been included in the model.

Part of the goal of the current study is to modify the
model cloud and rainwater ficlds using SSM/I retrievals of
ntegrated total liquid water or vertical distributions of water.
These observed quantities will be used to perturb existing
model cloud and rainwater fields.  Ieating rates, lagged by
one time step (At=10 min) or based on the total liquid water
from the 12h pre-forecast, are used in the initalization.
Muny different types of model experiments are to be

conducted, including those related to the model's response to
diubatic and initial information. '

Because of horizontal scale considerations, our
explicit cloud caleulations do not model individual clouds but
do approximate average values for a system or complex of
clouds.  This was the motivation behind the modifications
made to the Kessler (1974) cloud physics formulation. It is
known that the lifetime of individual clouds is less than one
hour while a cloud complex exists for many hours with
remnants lasting for days. Thus Kessler's accretion
(collection) process was modified to slow greatly the
conversion {rom cloud 1o rainwater when the cloud water C is
below a preset critical value Ci- Also incorporated is a
vertical dependence on temperature that follows the scheme
suggested by Schlesinger (1990).  This latter change helps
retain and enhance anvil or cloud top features.  In mixing
ratio units (gg''), the contribution to the rate of change from
acerelion is

ACC=0.88C,C, C RS (n
where C,=min[ 1.0, 1.0 - (C...—OVC

crit ] M
C,=min[ 1.0, (T -233)/40 ],
Cy=max[1.0,C, ] .

lere R is rainwater in mixing ratio units, T is the temperiture
in degrees Kelvin, and C_, =1 gkg''.  Initial experiments
give promising results, but additional tests and verifications
will be made 10 further evaluate computed cloud water
quantities.  These will include comparisons between model
cloud water fields and SSM/T retrievals of cloud water
distributions.

To fucilitate the large time step size used in the semi-
implicit forecast model the fallout term in sigma coordinates is
rewritten as two terms, one of which represents vertical
advection,
g9(pv,R)fdo = Ad(p*R)/oo + (" Re/pMHdpv)/os . ()]
Here p is the air density, v, (ms 1) is the terminal velocity of
raindrops, p* is the surface pressure, g is the acceleration of
gravity and A (s is equivalent to a velocity in the verntical o
coordinate system, that is

A= gpv /p*. (3)

The time tendency for A using (2) now can be found by
semi-Lagrangian procedures.

3. DISCUSSION OF RESULTS

Super-imposed over the GOES 7 IR image in Fig. |
are contours of cloudwater (solid) and rainwater (dashed) for
sigma level 4 (approx. 300 mb) from a 12h forecast.  The
contour interval is 0.1 gkg'!. The initial Gield for this ERICA
(Experiment on Rapidly Intensifying Cyclones over the
Adantic) 10P-5 case is obtained from NMC's initialized
clobal analysis.  For the most part, the forccasied cloud
fields assume the horizontal comma-shape shown in the



cloud calculations is delayed. This is becnuse the
autoconversion threshold, used to model the water holding
capacity of clouds, is not triggered until the cloudwater
exceeds 0.5 gkgl.

After 12h or 72 time steps, the forecast ficlds
generated by the explicit cloud calculations are assimilated to
begin a second 12-hour forecast. Note in TFig. 2 that the
precipitation rate remains unchanged following the
assimilation step as illustrated by the continuous curve
between steps 72 (square) and 73 (circle).  Tlowever, the
precipitation rate can incur irregular behavior if the irrotational
wind or dynamics are significantly changed. The incremental
analysis in our assimilation preserves the irrotational wind
component fron the previous forecast.  But, our current
VMI initialization can alter the convergence and/or
divergence. Thus, some consideration is being given to
instulling an incremental initialization procedure.

In Tig. 3 we expund the view of the sccond 12h

F'fg' 1. Contours (0.1 gkg™") of cloudwater (solid) fl‘"d period presented earlier in Fig. 2. Two of the curves from

rainwater (dashed) fro'm a 1Zh fox'cc‘ust (0000 to .12()()UlC, Fig. 2 arc reproduced for comparison purposes. They
-— 20 Jan 1989) are superimposed over te GOES IR image. include the cold started large scale calculations represented by
the triangle curve, and the assimilated hot start shown with
circles.  Addidonally, cold and hot started explicit cloud
calculations beginning with the global initialized analysis are
presented.  The hot started forecasts utilize cloudwater and
rainwater forceasted by the 12h pre-forecast,  The heating
rate at time step 72 is also used in the diabatic vertical mode
initialization,

. image. In this forecast no diabatic initialization was used.
When the modifications to the accretion term proposed in Eq.
(1) are removed, the amount of cloud water is reduced 1o just
one short contour (not shown) while the rainwater is
-— enhanced slightly beyond that shown in Fig. 1. Cloudwater
amounts at lower sigma levels also are much reduced when
the original Kessler formulation is used. With cither method
the total rainfal! is nearly identical in magnitude and areal
coverage. The maximum rainfall over 12 hours was 33 mm
for the modified approach and 34 mm for the original Kessler
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time step is ploued versus the time step for forecasts between 0l
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1200UTC, 19 Jan and 1200UTC, 20 Jan 1989. In the two E o2
. . " N 0.002
— forecasts without explicit clouds (lubeled "large scale™), all @
excess walter vapor exceeding saturation falls out § 0.001
immediately. This approach is known to produce rainfail < 0000
. . . . . . = o .
. rapidly. In contrast, noie that the precipitation in the explicit E 0

Tlme Step

0.006
Large Scale: Forecast 0-16h cold start

0.005 f & Large Scale: Forecast 12-24h cold start

—a——  Explicit Clouds: Forecast 0-12h cold start Fig. 3. Sume as Fig. 2 except for initalization.  All
0.004 F—O-— Explicit Clouds: Forecast 12-24 hot start forecasts bcgi" at time step 72

Area Average Prec Rate per Time Step

— 0.003
0.002 . . . -
Tt is clear that when the previous forecast model ficlds
0.001 arc used, as in the assimilation process, there is dynamics to
- 0000 ; support the cloud and rainwater.  Thus the forecasted
0 25 50 75 100 125 150 precipitation rate behaves properly (circle curve). When the
Time Step supporting mesoscale dynamics and moisture supply are
— missing, as in the global initialized analysis, then adding
cloud and rainwater initially can result in less realistic
Fig. 2. Area average precipitation rate (em) is plotted behavior as illustrated by the heavy solid curve in Fig. 3.
versus the time step for 4 forecasts.  Forecasts with and This curve illustrates our worst-case scenario. TFor this Tatter
- without explicit clouds illustrate the differences in the case, improvetment is obtained when the heating rates are also
precipitation spin-up time. used to force or nudge the dynamics (Wang and Warner
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198%) toward the desired goa! (not shown). We discovered
that enhanced development can become too strong in a
reduced area when only the heating rates from time step 72 in
the 12h pre-forecast are used.  Approximating the heating
rates from the total cloudwater and rainwater ficlds gives
better results.

Many additional experiments are required before the
best strategy or strategies are identified. But, the assimilation
approach using incremental changes clearly is indicated to be
a powerful technique that could solve the spin-up problem.
However, remotely sensed cloudwater and rainwater data,
and information about their vertical distribution, is still
required if the forecast is to correctly simulate the
atmosphere.
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PHYSICAL RETRIEVAL OF PRECIPITATION WATER CONTENTS USING
MULTISENSOR MICROWAVE DATA AND MODEL CONSTRAINTS

William S. Olson and William H. Raymond

CIMSS / Space Science and Engineering Center
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1. INTRODUCTION

The retrieval of precipitation distributions by passive
microwave techniques has been an area of study in satellite
remote sensing for well over a decade. The recent initiative to
estimate both the horizontal and vertical distributions of
precipitating liquid water in the tropics (i.e. the Tropical
Rainfall Measuring Mission or TRMM) has further stimulated
interest in this area; see Simpson, et al. (1988). The proposed
TRMM satellite will carry a suite of sensors including passive
and active microwave instruments, as well as visible and
infrared radiometers. A combination of microwave and
visible/IR sensors has also been proposed for one of the Earth
Observing System (EOS) platforms for the purpose of
retrieving rainfall rates and other geophysical parameters; ref.
Murphy (1987). Methods for determining precipitation
distributions based upon data from several instruments having
different spectral and resolution characteristics will therefore
be required.

Currently multispectral microwave observations from the
Special Sensor Microwave/Imager (SSM/I), borne by the
DMSP-F8, have provided researchers with the means for
retrieving rainfall rates; see Hollinger (1991), Kummerow and
Liberti (1990), Petty and Katsaros (1990). The SSMA is a
multichannel, dual-polarization, passive microwave radiometer
with channels at 19.35, 22.235, 37, and 85.5 GHz. The
diffraction limitation of the SSM/I antenna causes the spatial
resolution of measurements to increase with frequency, such
that the minimum footprint dimension decreases from 43 km at
19.35 GHz to 13 km at 85.5 GHz. The DMSP also carries the
Special Sensor Microwave/Temperature sounder with channels
at 50.5, 53.2, 54.35, 54.9, 58.4, 58.825, and 59.4 GHz,
and a footprint dimension of approximately 180 km at nadir
view. In the present study, a physical retrieval method for
estimating precipitation water distributions and other
geophysical parameters based upon measurements from the
DMSP-F8 SSM/1 is developed. Three unique features of the
retrieval method are (1) sensor antenna functions are explicitly
included to accommodate varying channel resolution, (2) an
embedded one-dimensional cloud model is utilized to generate
vertical distributions of precipitating and nonprecipitating
water, and (3) spectral solutions are sought for certain
background parameters, such as humidity, which vary more
slowly in the horizontal than the cloud and precipitation water
contents. The general framework of the method will allow us
to incorporate measurements from the SSM/T and
geostationary infrared measurements, as well as information
from conventional sources (e.g. radiosondes) or numerical
forecast model fields.

2. RETRIEVAL METHOD

The basis of the retrieval method is the minimum variance
solution as described in Lorenc (1986). An error functional
which expresses the deviation of the observed satellite antenna
temperatures from model-derived values, plus an additional
constraint which represents the deviation of retrieved
geophysical parameters from a priori estimates, is derived.

E = (TAobs - TA(P)mod)T £ ! (TAobs - TA(P)mod)

+ (P - Papriord)T &°! (P- Paprior) M

Here, TAobs is a vector of antenna temperature
measurements, TA(P)mod are antenna temperature estimates
based on a physical model, P is a vector of geophysical
parameters to be retrieved, and Papriori are estimates of the

parameters based upon a priori knowledge. X and A are
covariance matrices representing observational plus model

errors (Z), and errors in the a priori estimates (A). In this
study all off-diagonal elements of these matrices are neglected.

The antenna temperature model, TA(P)mod, embodies
the physical relationship between the geophysical parameters
to be retrieved and the antenna temperatures measured by the
radiometer. An element of TA(P)mod may be written

TA(P)p = AcT TB(P)p + Ax  TB(P)y + 8pTbb, (2)

where Ac and Ay are the co- and cross-polarized antenna
patterns of the radiometer, TB(P)p and TB(P)P' are the
modeled brightness temperatures in the polarization p and
orthogonal polarization p' with respect to the plane of

polarization of the measurement, and 8p is the fraction of the
radiometer feedhorn pattern not subtended by the antenna.
Tbb is the cosmic background radiance (2.7 K). Thus each
antenna temperature is modeled as the convolution of the
upwelling brightness temperature field by the antenna response
pattern of the sensor. In this way, measurements at different
channel frequencies or from different sensors which have

different sampling / spatial resolution can be accommodated.

The retrieval of preciptation liquid water contents and
other geophysical parameters is accomplished by iteratively
perturbing the geophysical parameters until the error functional
Eq. (1) is minimized. Unlike Lorenc (1986), we minimize the
crror functional using the memoryless, quasi-Newton method
described by Shanno (1978).

3. SENSOR RESPONSE MODEL

In this section, the components of the sensor antenna
temperature model, Eq. (2), are described.

3.1 Model Grid

Both the antenna response functions and brightness
temperature fields are discretized on a model grid. Rectangular
grid "boxes" are defined on the grid, such that the center of
each box coincides with the earth location of an all-channel
antenna temperature measurement from the SSM/L. The boxes
are oriented along the SSM/T A-scans (which contain the all-
channel measurements) at a regular spacing of 25 km. Since
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the cross-scan separation of succeeding A-scan lines varies
along the scan line, the cross-scan dimension of the grid boxes
also varies, with a maximum dimension of 25 km in the center
of the swath, and decreasing towards swath edge. In the
discretization of the antenna response functions and brightness
temperature fields, the variation of the grid box dimension
with scan position is taken into account.

3.2 Antenna Response Functions

Measurements of the SSM/I antenna reponse functions
and a detailed description of the SSM/I scan geometry were
provided by Gene Poe (currently with Aerojet Electrosystems
Co.). Using this information the integrated co- and cross-
polarized antenna responses over each grid box for all SSM/1
measurements are computed.

3.3 Radiative Transfer/ Cloud Model

The model for the average polarized brightness
temperature, TB(P)p, upwelling from a grid box is described
here. The earth's surface is characterized by a skin
temperature and an emissivity. The emissivity in each
polarization is represented using the two-parameter formula of
Grody (1988). The downwelling brightness at the top of the
atmosphere is set equal to the cosmic background value (2.7

K).

The model atmosphere is divided into 50 mb layers,
starting from an assumed top of the atmosphere at 100 mb.
Atmospheric temperature falls off linearly with height at a
fixed lapse rate of 5.4 K/km from a variable surface value.
The surface relative humidity (and the associated water vapor
density) is also allowed to vary in the retrieval. It is assumed
that the water vapor density falls off exponentially with height,
with a scale height of 2.0 km. The temperature lapse rate and
vapor scale height reflect the tropical climatological values
compiled by Jordan (1958).

Clouds are assumed to occupy a variable cloud fraction
within each grid box. Within the cloud fraction, the vertical
profiles of precipitating liquid water and ice hydrometeors, as
well as nonprecipitating cloud droplets and ice, are determined
using a one-dimensional, steady-state cloud model. The
updraft in the cloud model is an adaptation of the plume model
described in Anthes (1977), which utilizes the water substance
conservation equations of Kessler (1965). In light of the
arguments by Schlesinger (1990), the rate of accretion of
cloud water by rain drops is reduced by a factor of three from
the original formulation in Kessler. For a given cloud

(a)

®)

R NN

.........

......

Fig. 1. Retrieved surface relative humidity field in the vicinity
of Emily at 10 UTC on September 21, 1987. Values are in
percent; coastlines are dashed.

Fig. 2. Retrieved liquid precipitation water contents in the
vicinity of Emily at 10 UTC on September 21, 1987. Fields
are shown at pressure levels of (a) 550 mb, (b) 700 mb, ©
850 mb, and (d) at the surface. Contours are drawn at
increments of 0.2 g/m3, starting with a minimum contour of
0.2 g/m3. Maximum values are in tenths of a g/m3; coastlines
are dashed.
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SSM/I Physical Retrieval of Precipitation Distributions
and Numerical Model Forecast Applications

William S. Olson and William H. Raymond

CIMSS/Space Science and Engineering Center,
University of Wisconsin, Madison, Wisconsin 53706

The Special Sensor Microwave/Imager (SSM/T) is a passive microwave radiometer with
channels at 19.35, 22.235, 37, and 85.5 GHz. At the lower three frequencies, absorption
and re-emission of microwaves by liquid precipitation produces a measurable signal which
is strongly related to the vertically-integrated liquid water within the radiometer field of
view. At 85.5 GHz, liquid precipitation also has an absorption/emission signature, but the
upwelling microwave radiances are strongly modulated by scattering off precipitation-sized
ice particles which occur at greater altitudes. The combination of channels can therefore be
utilized to infer approximate vertical distributions of precipitation water contents,

A physical retrieval method based upon a minimum variance estimator is applied to the
SSM/I measured radiances to deduce the vertical distributions of precipitation water
contents in different weather systems. The retrieval method incorporates a radiative
parameterization for computing upwelling microwave radiances at the SSM/I frequencies as
functions of the non-homogeneous distributions of precipitating liquid and ice
hydrometeors over a 25 km x 25 km area (the sampling resolution of the SSM/I). The
radiative parameterization is based upon detailed calculations of the propagation of
microwaves through simulated cloud fields. Both convective and stratiform cloud fields
are generated using a numerical model. The spatially inhomogeneous response of the
SSM/I instrument to the upwelling radiance field (an antenna diffraction effect) is also
explicitly modeled in the physical retrieval method.

Retrieved precipitation water distributions are compared to volume radar scans from
Darwin, Australia and Kwajalein, Marshall Islands.

Latent heating rates inferred from SSM/I retrieved precipitation water distributions can
be assimilated into numerical weather prediction model forecasts. This kind of information

is especially important in data-sparse regions (i.e., over the oceans) where the development
of new storms may not be captured by the traditional observational network. Latent heating
fields have been assimilated into CIMSS Subsynoptic Scale Model forecasts using a new
method, and have shown significant impact on the "spin-up” and subsequent evolution of
rapidly deepening storms.

Latent heating information is used in the model's diabatic initialization and in the
Newtonian nudging of the temperature field early in the model forecast. The nudging
commences with the initial guess and is modified through time by the forecasted wind field
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and condensation rates. The Newtonian nudging of the model temperature field at locations
experiencing latent heating represents an external forcing that enhances rapid deepening in
model forecasts. Our findings show that diabatic initialization using two vertical modes
gives a small response, while four vertical modes can produce large changes that on
occasion generate model instability. Important factors influencing the outcome include the
model grid size, mesoscale content of the initial model fields and the model physics. By
introducing an estimated latent heating field into a numerical simulation of the ERICA
IOP-5 storm, 24 hour forecasts of central pressure decreased as much as 20 mb.
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SIMULATION OF SSM/1 OBSERVATIONS OF TROPICAL PRECIPITATION
BASED UPON DARWIN RADAR DATA
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1. INTRODUCTION

In the physical retrieval of precipitation
amounts using the satellite-borne Special Sensor
Microwave/Imager (SSM/I), an accurate radiative
transfer model relating liquid and ice-phase
precipitation water contents to upwelling, cloud top
radiances is required. One such model that has been
used to retrieve precipitation amounts from SSM/T (ref.
Olson and Raymond, 1992) is based upon Eddington's
second approximation, which includes the effect of
multiple scattering of microwave radiances off
precipitating hydrometeors. In the present study radar-
derived hydrometeor distributions will serve as input
to this radiative transfer model, to determine whether
or not consistency between the model-output radiances
and SSM/I observations can be achieved, and under
what modeling assumptions. This study should lead to
an improved radiative model and more accurate SSM/I
physical retrievals.

2. RADAR DATA AND PROCESSING

Volume radar reflectivity data from the 5-cm
Darwin/TOGA installation recorded during the passage

of a squall line at 18:20 UTC on February 9, 1988 are
interpolated to a cartesian grid with dimensions 240
km x 240 km x 18 km. The grid spacings are 2 km in
the horizontal and 1.5 km in the vertical. The radar
data in elevation/azimuth/range format are interpolated
to grid locations based on the method of Mohr and
Vaughan (1979).

Within the convective leading edge of the
squall line, the fractions of liquid and ice precipitation
associated with a measured reflectivity are estimated
using the temperature-dependent partitioning scheme
of Moss and Johnson (1992). Within the trailing
stratiform precipitation region, it is assumed that the
radar reflectivity is due entirely to ice-phase
hydrometeors above the freezing level, and below the
6 C level the radar reflectivity is due entirely to liquid
hydrometeors. A linear transition from ice to liquid
between 0 C and 6 C is assumed. This stratiform
precipitation partitioning scheme is based upon model
simulations of anvil clouds using a one-dimensional
version of the Ridout (1991) model. The vertical
profile of environmental temperatures is obtained from
the Darwin sounding at 22:00 UTC on February 9,
1988.

Fig. 1. Fields of slant path-integrated liquid precipitation (a) and ice precipitation (b) derived from the
Darwin/TOGA radar at 18:20 UTC on February 9, 1988. Coastlines are indicated by white lines, and the white
circle indicates a data-void region in the radar volume scan. Each panel covers an area of 240 km x 240 km.
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Fig. 2. Simulated brightness temperature fields at 37 GHz and 85.5 GHz are shown in panels (a) and (b),
respectively. Simulated antenna temperature fields at 37 GHz and 85.5 GHz are shown in panels (c) and (d), while
SSM/I observed antenna temperatures at 37 GHz and 85.5 GHz are shown in panels (e) and (f).
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Integrated liquid and ice-phase precipitation
fields derived from the Darwin volume scan are shown
in Figs. 1a and 1b, respectively. The convective
leading edge of the squall line is seen crossing the
Darwin radar site along the northern coast of Australia.
The region of trailing stratiform precipitation is
primarily to the south of the leading edge. Northwest
of the radar site, convective precipitation between
Bathurst and Melville Islands is also observed. The
white circle in the precipitation images indicates a
data-void zone in the radar volume scan.

3. SSM/1 SIMULATIONS

3.1 Radijative Transfer Calculations

The liquid and ice precipitation water
contents derived from the radar are converted to values
of extinction coefficient, single-scatter albedo, and
asymmetry factor at the SSM/I frequencies (19.35,
22.235, 37, and 85.5 GHz) using the
parameterizations in Kummerow and Weinman (1988).
Absorption coefficients for molecular oxygen and
water vapor are computed using the formulae of Liebe
(1985). Microwave absorption by non-precipitating
clouds is neglected in the present development. A
surface skin temperature of 300 K and emissivities
characteristic of land and ocean surfaces, where
appropriate, are assumed.

The upwelling microwave radiances at the
SSM/I frequencies in two orthogonal planes of
polarization at an incidence angle of 53.1° are
computed using Eddington's second approximation
along individual ray paths through the radar volume.
The resulting field of microwave brightness
temperatures at 2 km resolution at 37 GHz and 85.5
GHz in the horizontal polarization are shown in Figs.
2a and 2b, respectively.

3.2 Sensor Response

The spatial resolution of the SSM/I varies
from about 55 km at 19.35 GHz to 14 km at 85.5 GHz,
and antenna temperatures are sampled at intervals of
12.5 km at 85 GHz, and at 25 km at all other
frequencies. In order to simulate SSM/I resolution
effects, the 2 km resolution images in Figs. 2a and 2b
are convolved by the SSM/I 37 GHz and 85.5 GHz
antenna patterns. The resulting images are then
resampled at the SSM/I measurement locations. The
final simulated antenna temperature images at 37 GHz
and 85.5 GHz ate presented in Figs. 2¢c and 2d,
respectively.  Coincident antenna temperature
measurements from the SSM/I are shown in Figs. 2e
and 2f.

4, RESULTS AND DISCUSSION

A general correspondence between
precipitation regions in the simulated and observed
SSM/1 imagery is evident, and the magnitudes of the
antenna temperatures are fairly consistent. However,

the simulated antenna temperatures in the convective
regions tend to be higher than those observed, while
minimum simulated antenna temperatures over the
stratiform precipitation region tend to be lower than
those observed. These differences are most obvious in
the 85.5 GHz imagery, for which scattering by
precipitation-sized ice particles, and the associated
lowering of upwelling radiances, is more pronounced
than at 37 GHz. Errors in the partitioning of the liquid
and ice precipitation components in the simulations
might account for these discrepancies. Also it may be
noted that simulated antenna temperatures at 37 GHz
over the ocean tend to be somewhat lower than those
observed. The lack of nonprecipitating clouds in the
simulations might account for less emission and lower
antenna temperatures over the low-emissivity ocean
background. The sensitivity of simulated antenna
temperatures to modeling assumptions will be the
subject of future study.
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